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Rowshan Ara Begum, Nripen Chanda, T. V.

Department of Chemistry, Umrsity of Missouri, 12

V. Ramakrishna, and Paul R. Sharp*
5 Chemistry Building, Columbia, Missouri 65211

Received July 20, 2005; E-mail: SharpP@missouri.edu

Metal-mediated cycloadditions are important chemical reactidns.

Metallacycles, intermediates in many of these reactions, have been

intensively investigated over the years and shown to give cyclo-
addition products with alkynes1! Herein, we report alkyne
cycloaddition reactions of two members of a little-studied metal-

lacycle class, where the metallacycles are fused to the edge of

polycyclic aromatic carbon compounds (PAC’s).
The two platinacycledsl and 2 are readily synthesized from
L,PtCh (L = PEg) and the dilithio PAC’s (Scheme 1j.Complex
1, arare four-membered example of this class of metallacyiés,
may also be prepared by Na/Hg reduction3obr, as previously
reported, from LPtChL and [Mg(1,8-naphthalendiyl}® Both 1 and
2 are thermally robust and withstand heating in toluene solution to
more than 15CC for hours with no observable decomposition.
Part of our interest in this class of metallacycles is for the
synthesis of larger, more complex PAC'’s through coupling and
cycloaddition reaction¥ We, therefore, studied the reactionslof
and2 with alkynes under Bl At 25 °C, there is no reaction between
1 and PhCCPh in toluene solution. However, heating the mixture
to 120 °C gives, after several hours, a clear yellow solution
containing the cycloaddition product 1,2-diphenylacenaphthylene
(64% isolated vyield), perylene (18%), and alkyne compfék
(quantitative yield by NMR) (eq 1). Similar reactions with the
alkynes RCCR (R= Et, COMe, COEL) give the expected
acenaphthylenes. An analogous reactio? ahd PhCCPh at 150
°C yields cycloaddition product 4,5-diphenylbergpyrene5 (86%
isolated yield) andt (eq 2).
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As the reaction in eq 1 is the first example of an alkyne
cycloaddition reaction of a four-membered PAC metallacytlé,
we investigated the kinetics of the reaction. Plots of the concentra-
tion of 1 versus time for the reaction dfwith 2 equiv of PhCCPh
under different atmospheric conditions are given in Figure 1. There
are two notable features: (1) each set of data cannot be fit to any
simple order rate law with the unusual downward curvatures of
the plots indicating an accelerating reaction rate, and (2) the reaction
is sensitive to @with the slowest reaction in a vacuum-sealed tube
(blue circles), the fastest with added, Qred squares), and
intermediate in a dinitrogen atmosphere (green triangles).

Accelerating reaction rates are encountered in autocatalytic
reactions:®20where a product is a catalyst for the reaction, and in
colloidal metal-catalyzed organic reactions, where the colloid is
produced during the reaction by an autocatalytic nucleation and
growth processl2?
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Consistent with the generation of a catalyst during the reaction,
re-addition ofl and alkyne to a completed,Neaction mixture
results in a rapid initial reaction rate without the downward
curvature of Figure 1. This could result if the product alkyne
complex4 is a catalyst, and indeed, when independently prepared
4 is added to a fresh reaction mixture, a rapid initial reaction rate
is observed. However, whilé must be a catalyst precursor under
the reaction conditions, it is not itself a catalyst4adoes not react
with 1 in the absence of alkyne.

The G sensitivity of the cycloaddition reaction suggests that
O, is involved in catalyst generatidd.To explore this, separate
solutions ofl and4 were heated fol h with 0.2 equiv of Q. By
31P NMR spectroscopy, there is no observed changg, inut 4
showed the formation of a small amount o§ED. These solutions
were then degassed and used to prepare cycloaddition reactions
under N. The reaction prepared from the treated solutionlof
followed the same reaction curve as an untreated sample. In contrast,
the reaction prepared from the treated solutiod ghve a greatly
enhanced reaction rate over a similar untreated sample and was
comparable to the fastest rate observed in the reaction conducted
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Figure 1. Plot of the concentration df versus time for the reaction in eq
1 (2 equiv of PhCCPh, 126C): (a) blue dots, vacuum-sealed; (b) green
triangles, under i (c) red squares, 30L of O, (0.2 equiv). Line traces
represent fitted curves (see text).
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with added Q. We conclude that the reaction 4fwith O, yields organometallic reactior?$;?® these are also rare examples of
the catalyst. Taking these observations together, we propose thecycloaddition chemistry catalyzed by colloidal me¥al3?
reaction sequence of eqs 3 and 4. In conclusion, evidence is presented that the cycloaddition
reactions of the PAC platinacyclésand?2 with diphenylacetylene
O catalys Ph Ph_Ph ) are catalyzed by colloidal Pt generated by the oxidative de-ligation
LoPt ' * 2PhCCPh o (I 060 of product LPt¢;2-PhCCPh) by traces of OThese results should
1 4 Ph be considered in the mechanisms of other organometallic reactions,
including those that are steps in catalytic cycles in metal-catalyzed
ph Ph organic reactions. In addition, the formation of colloidal metal from
L2:>t—|i|h + 0, —= 2EtP=0 + || + catalyst @ a metal complex and ubiquitous @ in contrast to the more usual
Ph

reductive colloid synthesi% and suggests that colloid formation

A simplified mechanism based on this scheme is given in eqs 5 underl oxidative conditions may be common for noble metal
and 6 and was used to fit the data in Figure 1 (solid lines). First, complexes.
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